1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
(*****************************************************************************)
(* *)
(* Open Source License *)
(* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* Permission is hereby granted, free of charge, to any person obtaining a *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense, *)
(* and/or sell copies of the Software, and to permit persons to whom the *)
(* Software is furnished to do so, subject to the following conditions: *)
(* *)
(* The above copyright notice and this permission notice shall be included *)
(* in all copies or substantial portions of the Software. *)
(* *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *)
(* DEALINGS IN THE SOFTWARE. *)
(* *)
(*****************************************************************************)
open Alpha_context
open Script
open Script_typed_ir
open Script_ir_translator
(* ---- Run-time errors -----------------------------------------------------*)
type execution_trace =
(Script.location * Gas.t * (Script.expr * string option) list) list
type error += Reject of Script.location * Script.expr * execution_trace option
type error += Overflow of Script.location * execution_trace option
type error += Runtime_contract_error : Contract.t * Script.expr -> error
type error += Bad_contract_parameter of Contract.t (* `Permanent *)
type error += Cannot_serialize_log
type error += Cannot_serialize_failure
type error += Cannot_serialize_storage
let () =
let open Data_encoding in
let trace_encoding =
(list @@ obj3
(req "location" Script.location_encoding)
(req "gas" Gas.encoding)
(req "stack"
(list
(obj2
(req "item" (Script.expr_encoding))
(opt "annot" string))))) in
(* Reject *)
register_error_kind
`Temporary
~id:"michelson_v1.script_rejected"
~title: "Script failed"
~description: "A FAILWITH instruction was reached"
(obj3
(req "location" Script.location_encoding)
(req "with" Script.expr_encoding)
(opt "trace" trace_encoding))
(function Reject (loc, v, trace) -> Some (loc, v, trace) | _ -> None)
(fun (loc, v, trace) -> Reject (loc, v, trace));
(* Overflow *)
register_error_kind
`Temporary
~id:"michelson_v1.script_overflow"
~title: "Script failed (overflow error)"
~description: "A FAIL instruction was reached due to the detection of an overflow"
(obj2
(req "location" Script.location_encoding)
(opt "trace" trace_encoding))
(function Overflow (loc, trace) -> Some (loc, trace) | _ -> None)
(fun (loc, trace) -> Overflow (loc, trace));
(* Runtime contract error *)
register_error_kind
`Temporary
~id:"michelson_v1.runtime_error"
~title: "Script runtime error"
~description: "Toplevel error for all runtime script errors"
(obj2
(req "contract_handle" Contract.encoding)
(req "contract_code" Script.expr_encoding))
(function
| Runtime_contract_error (contract, expr) ->
Some (contract, expr)
| _ -> None)
(fun (contract, expr) ->
Runtime_contract_error (contract, expr)) ;
(* Bad contract parameter *)
register_error_kind
`Permanent
~id:"michelson_v1.bad_contract_parameter"
~title:"Contract supplied an invalid parameter"
~description:"Either no parameter was supplied to a contract with \
a non-unit parameter type, a non-unit parameter was \
passed to an account, or a parameter was supplied of \
the wrong type"
Data_encoding.(obj1 (req "contract" Contract.encoding))
(function Bad_contract_parameter c -> Some c | _ -> None)
(fun c -> Bad_contract_parameter c) ;
(* Cannot serialize log *)
register_error_kind
`Temporary
~id:"michelson_v1.cannot_serialize_log"
~title:"Not enough gas to serialize execution trace"
~description:"Execution trace with stacks was to big to be serialized with \
the provided gas"
Data_encoding.empty
(function Cannot_serialize_log -> Some () | _ -> None)
(fun () -> Cannot_serialize_log) ;
(* Cannot serialize failure *)
register_error_kind
`Temporary
~id:"michelson_v1.cannot_serialize_failure"
~title:"Not enough gas to serialize argument of FAILWITH"
~description:"Argument of FAILWITH was too big to be serialized with \
the provided gas"
Data_encoding.empty
(function Cannot_serialize_failure -> Some () | _ -> None)
(fun () -> Cannot_serialize_failure) ;
(* Cannot serialize storage *)
register_error_kind
`Temporary
~id:"michelson_v1.cannot_serialize_storage"
~title:"Not enough gas to serialize execution storage"
~description:"The returned storage was too big to be serialized with \
the provided gas"
Data_encoding.empty
(function Cannot_serialize_storage -> Some () | _ -> None)
(fun () -> Cannot_serialize_storage)
(* ---- interpreter ---------------------------------------------------------*)
type 'tys stack =
| Item : 'ty * 'rest stack -> ('ty * 'rest) stack
| Empty : end_of_stack stack
let unparse_stack ctxt (stack, stack_ty) =
(* We drop the gas limit as this function is only used for debugging/errors. *)
let ctxt = Gas.set_unlimited ctxt in
let rec unparse_stack
: type a. a stack * a stack_ty -> (Script.expr * string option) list tzresult Lwt.t
= function
| Empty, Empty_t -> return_nil
| Item (v, rest), Item_t (ty, rest_ty, annot) ->
unparse_data ctxt Readable ty v >>=? fun (data, _ctxt) ->
unparse_stack (rest, rest_ty) >>=? fun rest ->
let annot = match Script_ir_annot.unparse_var_annot annot with
| [] -> None
| [ a ] -> Some a
| _ -> assert false in
let data = Micheline.strip_locations data in
return ((data, annot) :: rest) in
unparse_stack (stack, stack_ty)
module Interp_costs = Michelson_v1_gas.Cost_of.Interpreter
let rec interp_stack_prefix_preserving_operation : type fbef bef faft aft result .
(fbef stack -> (faft stack * result) tzresult Lwt.t)
-> (fbef, faft, bef, aft) stack_prefix_preservation_witness
-> bef stack
-> (aft stack * result) tzresult Lwt.t =
fun f n stk ->
match n,stk with
| Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix (Prefix n))))))))))))))),
Item (v0, Item (v1, Item (v2, Item (v3, Item (v4, Item (v5, Item (v6, Item (v7, Item (v8, Item (v9, Item (va, Item (vb, Item (vc, Item (vd, Item (ve, Item (vf, rest)))))))))))))))) ->
interp_stack_prefix_preserving_operation f n rest >>=? fun (rest', result) ->
return (Item (v0, Item (v1, Item (v2, Item (v3, Item (v4, Item (v5, Item (v6, Item (v7, Item (v8, Item (v9, Item (va, Item (vb, Item (vc, Item (vd, Item (ve, Item (vf, rest')))))))))))))))), result)
| Prefix (Prefix (Prefix (Prefix n))),
Item (v0, Item (v1, Item (v2, Item (v3, rest)))) ->
interp_stack_prefix_preserving_operation f n rest >>=? fun (rest', result) ->
return (Item (v0, Item (v1, Item (v2, Item (v3, rest')))), result)
| Prefix n, Item (v, rest) ->
interp_stack_prefix_preserving_operation f n rest >>=? fun (rest', result) ->
return (Item (v, rest'), result)
| Rest, v -> f v
type step_constants =
{ source : Contract.t ;
payer : Contract.t ;
self : Contract.t ;
amount : Tez.t ;
chain_id : Chain_id.t }
let rec step
: type b a.
(?log: execution_trace ref ->
context -> step_constants -> (b, a) descr -> b stack ->
(a stack * context) tzresult Lwt.t) =
fun ?log ctxt step_constants ({ instr ; loc ; _ } as descr) stack ->
Lwt.return (Gas.consume ctxt Interp_costs.cycle) >>=? fun ctxt ->
let logged_return : type a b.
(b, a) descr ->
a stack * context ->
(a stack * context) tzresult Lwt.t =
fun descr (ret, ctxt) ->
match log with
| None -> return (ret, ctxt)
| Some log ->
trace
Cannot_serialize_log
(unparse_stack ctxt (ret, descr.aft)) >>=? fun stack ->
log := (descr.loc, Gas.level ctxt, stack) :: !log ;
return (ret, ctxt) in
let get_log (log : execution_trace ref option) =
Option.map ~f:(fun l -> List.rev !l) log in
let consume_gas_terop : type ret arg1 arg2 arg3 rest.
(_ * (_ * (_ * rest)), ret * rest) descr ->
((arg1 -> arg2 -> arg3 -> ret) * arg1 * arg2 * arg3) ->
(arg1 -> arg2 -> arg3 -> Gas.cost) ->
rest stack ->
((ret * rest) stack * context) tzresult Lwt.t =
fun descr (op, x1, x2, x3) cost_func rest ->
Lwt.return (Gas.consume ctxt (cost_func x1 x2 x3)) >>=? fun ctxt ->
logged_return descr (Item (op x1 x2 x3, rest), ctxt) in
let consume_gas_binop : type ret arg1 arg2 rest.
(_ * (_ * rest), ret * rest) descr ->
((arg1 -> arg2 -> ret) * arg1 * arg2) ->
(arg1 -> arg2 -> Gas.cost) ->
rest stack ->
context ->
((ret * rest) stack * context) tzresult Lwt.t =
fun descr (op, x1, x2) cost_func rest ctxt ->
Lwt.return (Gas.consume ctxt (cost_func x1 x2)) >>=? fun ctxt ->
logged_return descr (Item (op x1 x2, rest), ctxt) in
let consume_gas_unop : type ret arg rest.
(_ * rest, ret * rest) descr ->
((arg -> ret) * arg) ->
(arg -> Gas.cost) ->
rest stack ->
context ->
((ret * rest) stack * context) tzresult Lwt.t =
fun descr (op, arg) cost_func rest ctxt ->
Lwt.return (Gas.consume ctxt (cost_func arg)) >>=? fun ctxt ->
logged_return descr (Item (op arg, rest), ctxt) in
let logged_return :
a stack * context ->
(a stack * context) tzresult Lwt.t =
logged_return descr in
match instr, stack with
(* stack ops *)
| Drop, Item (_, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
logged_return (rest, ctxt)
| Dup, Item (v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
logged_return (Item (v, Item (v, rest)), ctxt)
| Swap, Item (vi, Item (vo, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
logged_return (Item (vo, Item (vi, rest)), ctxt)
| Const v, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt ->
logged_return (Item (v, rest), ctxt)
(* options *)
| Cons_some, Item (v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt ->
logged_return (Item (Some v, rest), ctxt)
| Cons_none _, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.variant_no_data) >>=? fun ctxt ->
logged_return (Item (None, rest), ctxt)
| If_none (bt, _), Item (None, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ?log ctxt step_constants bt rest
| If_none (_, bf), Item (Some v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ?log ctxt step_constants bf (Item (v, rest))
(* pairs *)
| Cons_pair, Item (a, Item (b, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.pair) >>=? fun ctxt ->
logged_return (Item ((a, b), rest), ctxt)
(* Peephole optimization for UNPAIR *)
| Seq ({instr=Dup;_},
{instr=Seq ({instr=Car;_},
{instr=Seq ({instr=Dip {instr=Cdr}},
{instr=Nop;_});_});_}),
Item ((a, b), rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt ->
logged_return (Item (a, Item (b, rest)), ctxt)
| Car, Item ((a, _), rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt ->
logged_return (Item (a, rest), ctxt)
| Cdr, Item ((_, b), rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt ->
logged_return (Item (b, rest), ctxt)
(* unions *)
| Left, Item (v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt ->
logged_return (Item (L v, rest), ctxt)
| Right, Item (v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt ->
logged_return (Item (R v, rest), ctxt)
| If_left (bt, _), Item (L v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ?log ctxt step_constants bt (Item (v, rest))
| If_left (_, bf), Item (R v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ?log ctxt step_constants bf (Item (v, rest))
(* lists *)
| Cons_list, Item (hd, Item (tl, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.cons) >>=? fun ctxt ->
logged_return (Item (hd :: tl, rest), ctxt)
| Nil, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.variant_no_data) >>=? fun ctxt ->
logged_return (Item ([], rest), ctxt)
| If_cons (_, bf), Item ([], rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ?log ctxt step_constants bf rest
| If_cons (bt, _), Item (hd :: tl, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ?log ctxt step_constants bt (Item (hd, Item (tl, rest)))
| List_map body, Item (l, rest) ->
let rec loop rest ctxt l acc =
Lwt.return (Gas.consume ctxt Interp_costs.loop_map) >>=? fun ctxt ->
match l with
| [] -> return (Item (List.rev acc, rest), ctxt)
| hd :: tl ->
step ?log ctxt step_constants body (Item (hd, rest))
>>=? fun (Item (hd, rest), ctxt) ->
loop rest ctxt tl (hd :: acc)
in loop rest ctxt l [] >>=? fun (res, ctxt) ->
logged_return (res, ctxt)
| List_size, Item (list, rest) ->
Lwt.return
(List.fold_left
(fun acc _ ->
acc >>? fun (size, ctxt) ->
Gas.consume ctxt Interp_costs.loop_size >>? fun ctxt ->
ok (size + 1 (* FIXME: overflow *), ctxt))
(ok (0, ctxt)) list) >>=? fun (len, ctxt) ->
logged_return (Item (Script_int.(abs (of_int len)), rest), ctxt)
| List_iter body, Item (l, init) ->
let rec loop ctxt l stack =
Lwt.return (Gas.consume ctxt Interp_costs.loop_iter) >>=? fun ctxt ->
match l with
| [] -> return (stack, ctxt)
| hd :: tl ->
step ?log ctxt step_constants body (Item (hd, stack))
>>=? fun (stack, ctxt) ->
loop ctxt tl stack
in loop ctxt l init >>=? fun (res, ctxt) ->
logged_return (res, ctxt)
(* sets *)
| Empty_set t, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.empty_set) >>=? fun ctxt ->
logged_return (Item (empty_set t, rest), ctxt)
| Set_iter body, Item (set, init) ->
Lwt.return (Gas.consume ctxt (Interp_costs.set_to_list set)) >>=? fun ctxt ->
let l = List.rev (set_fold (fun e acc -> e :: acc) set []) in
let rec loop ctxt l stack =
Lwt.return (Gas.consume ctxt Interp_costs.loop_iter) >>=? fun ctxt ->
match l with
| [] -> return (stack, ctxt)
| hd :: tl ->
step ?log ctxt step_constants body (Item (hd, stack))
>>=? fun (stack, ctxt) ->
loop ctxt tl stack
in loop ctxt l init >>=? fun (res, ctxt) ->
logged_return (res, ctxt)
| Set_mem, Item (v, Item (set, rest)) ->
consume_gas_binop descr (set_mem, v, set) Interp_costs.set_mem rest ctxt
| Set_update, Item (v, Item (presence, Item (set, rest))) ->
consume_gas_terop descr (set_update, v, presence, set) Interp_costs.set_update rest
| Set_size, Item (set, rest) ->
consume_gas_unop descr (set_size, set) (fun _ -> Interp_costs.set_size) rest ctxt
(* maps *)
| Empty_map (t, _), rest ->
Lwt.return (Gas.consume ctxt Interp_costs.empty_map) >>=? fun ctxt ->
logged_return (Item (empty_map t, rest), ctxt)
| Map_map body, Item (map, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.map_to_list map)) >>=? fun ctxt ->
let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in
let rec loop rest ctxt l acc =
Lwt.return (Gas.consume ctxt Interp_costs.loop_map) >>=? fun ctxt ->
match l with
| [] -> return (acc, ctxt)
| (k, _) as hd :: tl ->
step ?log ctxt step_constants body (Item (hd, rest))
>>=? fun (Item (hd, rest), ctxt) ->
loop rest ctxt tl (map_update k (Some hd) acc)
in loop rest ctxt l (empty_map (map_key_ty map)) >>=? fun (res, ctxt) ->
logged_return (Item (res, rest), ctxt)
| Map_iter body, Item (map, init) ->
Lwt.return (Gas.consume ctxt (Interp_costs.map_to_list map)) >>=? fun ctxt ->
let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in
let rec loop ctxt l stack =
Lwt.return (Gas.consume ctxt Interp_costs.loop_iter) >>=? fun ctxt ->
match l with
| [] -> return (stack, ctxt)
| hd :: tl ->
step ?log ctxt step_constants body (Item (hd, stack))
>>=? fun (stack, ctxt) ->
loop ctxt tl stack
in loop ctxt l init >>=? fun (res, ctxt) ->
logged_return (res, ctxt)
| Map_mem, Item (v, Item (map, rest)) ->
consume_gas_binop descr (map_mem, v, map) Interp_costs.map_mem rest ctxt
| Map_get, Item (v, Item (map, rest)) ->
consume_gas_binop descr (map_get, v, map) Interp_costs.map_get rest ctxt
| Map_update, Item (k, Item (v, Item (map, rest))) ->
consume_gas_terop descr (map_update, k, v, map) Interp_costs.map_update rest
| Map_size, Item (map, rest) ->
consume_gas_unop descr (map_size, map) (fun _ -> Interp_costs.map_size) rest ctxt
(* Big map operations *)
| Empty_big_map (tk, tv), rest ->
Lwt.return (Gas.consume ctxt Interp_costs.empty_map) >>=? fun ctxt ->
logged_return (Item (Script_ir_translator.empty_big_map tk tv, rest), ctxt)
| Big_map_mem, Item (key, Item (map, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.map_mem key map.diff)) >>=? fun ctxt ->
Script_ir_translator.big_map_mem ctxt key map >>=? fun (res, ctxt) ->
logged_return (Item (res, rest), ctxt)
| Big_map_get, Item (key, Item (map, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.map_get key map.diff)) >>=? fun ctxt ->
Script_ir_translator.big_map_get ctxt key map >>=? fun (res, ctxt) ->
logged_return (Item (res, rest), ctxt)
| Big_map_update, Item (key, Item (maybe_value, Item (map, rest))) ->
consume_gas_terop descr
(Script_ir_translator.big_map_update, key, maybe_value, map)
(fun k v m -> Interp_costs.map_update k (Some v) m.diff) rest
(* timestamp operations *)
| Add_seconds_to_timestamp, Item (n, Item (t, rest)) ->
consume_gas_binop descr
(Script_timestamp.add_delta, t, n)
Interp_costs.add_timestamp rest ctxt
| Add_timestamp_to_seconds, Item (t, Item (n, rest)) ->
consume_gas_binop descr (Script_timestamp.add_delta, t, n)
Interp_costs.add_timestamp rest ctxt
| Sub_timestamp_seconds, Item (t, Item (s, rest)) ->
consume_gas_binop descr (Script_timestamp.sub_delta, t, s)
Interp_costs.sub_timestamp rest ctxt
| Diff_timestamps, Item (t1, Item (t2, rest)) ->
consume_gas_binop descr (Script_timestamp.diff, t1, t2)
Interp_costs.diff_timestamps rest ctxt
(* string operations *)
| Concat_string_pair, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.concat_string [x; y])) >>=? fun ctxt ->
let s = String.concat "" [x; y] in
logged_return (Item (s, rest), ctxt)
| Concat_string, Item (ss, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.concat_string ss)) >>=? fun ctxt ->
let s = String.concat "" ss in
logged_return (Item (s, rest), ctxt)
| Slice_string, Item (offset, Item (length, Item (s, rest))) ->
let s_length = Z.of_int (String.length s) in
let offset = Script_int.to_zint offset in
let length = Script_int.to_zint length in
if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then
Lwt.return (Gas.consume ctxt (Interp_costs.slice_string (Z.to_int length))) >>=? fun ctxt ->
logged_return (Item (Some (String.sub s (Z.to_int offset) (Z.to_int length)), rest), ctxt)
else
Lwt.return (Gas.consume ctxt (Interp_costs.slice_string 0)) >>=? fun ctxt ->
logged_return (Item (None, rest), ctxt)
| String_size, Item (s, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt ->
logged_return (Item (Script_int.(abs (of_int (String.length s))), rest), ctxt)
(* bytes operations *)
| Concat_bytes_pair, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.concat_bytes [x; y])) >>=? fun ctxt ->
let s = MBytes.concat "" [x; y] in
logged_return (Item (s, rest), ctxt)
| Concat_bytes, Item (ss, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.concat_bytes ss)) >>=? fun ctxt ->
let s = MBytes.concat "" ss in
logged_return (Item (s, rest), ctxt)
| Slice_bytes, Item (offset, Item (length, Item (s, rest))) ->
let s_length = Z.of_int (MBytes.length s) in
let offset = Script_int.to_zint offset in
let length = Script_int.to_zint length in
if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then
Lwt.return (Gas.consume ctxt (Interp_costs.slice_string (Z.to_int length))) >>=? fun ctxt ->
logged_return (Item (Some (MBytes.sub s (Z.to_int offset) (Z.to_int length)), rest), ctxt)
else
Lwt.return (Gas.consume ctxt (Interp_costs.slice_string 0)) >>=? fun ctxt ->
logged_return (Item (None, rest), ctxt)
| Bytes_size, Item (s, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt ->
logged_return (Item (Script_int.(abs (of_int (MBytes.length s))), rest), ctxt)
(* currency operations *)
| Add_tez, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
Lwt.return Tez.(x +? y) >>=? fun res ->
logged_return (Item (res, rest), ctxt)
| Sub_tez, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
Lwt.return Tez.(x -? y) >>=? fun res ->
logged_return (Item (res, rest), ctxt)
| Mul_teznat, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
Lwt.return (Gas.consume ctxt Interp_costs.z_to_int64) >>=? fun ctxt ->
begin
match Script_int.to_int64 y with
| None -> fail (Overflow (loc, get_log log))
| Some y ->
Lwt.return Tez.(x *? y) >>=? fun res ->
logged_return (Item (res, rest), ctxt)
end
| Mul_nattez, Item (y, Item (x, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
Lwt.return (Gas.consume ctxt Interp_costs.z_to_int64) >>=? fun ctxt ->
begin
match Script_int.to_int64 y with
| None -> fail (Overflow (loc, get_log log))
| Some y ->
Lwt.return Tez.(x *? y) >>=? fun res ->
logged_return (Item (res, rest), ctxt)
end
(* boolean operations *)
| Or, Item (x, Item (y, rest)) ->
consume_gas_binop descr ((||), x, y) Interp_costs.bool_binop rest ctxt
| And, Item (x, Item (y, rest)) ->
consume_gas_binop descr ((&&), x, y) Interp_costs.bool_binop rest ctxt
| Xor, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Compare.Bool.(<>), x, y) Interp_costs.bool_binop rest ctxt
| Not, Item (x, rest) ->
consume_gas_unop descr (not, x) Interp_costs.bool_unop rest ctxt
(* integer operations *)
| Is_nat, Item (x, rest) ->
consume_gas_unop descr (Script_int.is_nat, x) Interp_costs.abs rest ctxt
| Abs_int, Item (x, rest) ->
consume_gas_unop descr (Script_int.abs, x) Interp_costs.abs rest ctxt
| Int_nat, Item (x, rest) ->
consume_gas_unop descr (Script_int.int, x) Interp_costs.int rest ctxt
| Neg_int, Item (x, rest) ->
consume_gas_unop descr (Script_int.neg, x) Interp_costs.neg rest ctxt
| Neg_nat, Item (x, rest) ->
consume_gas_unop descr (Script_int.neg, x) Interp_costs.neg rest ctxt
| Add_intint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt
| Add_intnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt
| Add_natint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt
| Add_natnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.add_n, x, y) Interp_costs.add rest ctxt
| Sub_int, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.sub, x, y) Interp_costs.sub rest ctxt
| Mul_intint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt
| Mul_intnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt
| Mul_natint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt
| Mul_natnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.mul_n, x, y) Interp_costs.mul rest ctxt
| Ediv_teznat, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt ->
let x = Script_int.of_int64 (Tez.to_mutez x) in
consume_gas_binop descr
((fun x y ->
match Script_int.ediv x y with
| None -> None
| Some (q, r) ->
match Script_int.to_int64 q,
Script_int.to_int64 r with
| Some q, Some r ->
begin
match Tez.of_mutez q, Tez.of_mutez r with
| Some q, Some r -> Some (q,r)
(* Cannot overflow *)
| _ -> assert false
end
(* Cannot overflow *)
| _ -> assert false),
x, y)
Interp_costs.div
rest
ctxt
| Ediv_tez, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt ->
let x = Script_int.abs (Script_int.of_int64 (Tez.to_mutez x)) in
let y = Script_int.abs (Script_int.of_int64 (Tez.to_mutez y)) in
consume_gas_binop descr
((fun x y -> match Script_int.ediv_n x y with
| None -> None
| Some (q, r) ->
match Script_int.to_int64 r with
| None -> assert false (* Cannot overflow *)
| Some r ->
match Tez.of_mutez r with
| None -> assert false (* Cannot overflow *)
| Some r -> Some (q, r)),
x, y)
Interp_costs.div
rest
ctxt
| Ediv_intint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt
| Ediv_intnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt
| Ediv_natint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt
| Ediv_natnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.ediv_n, x, y) Interp_costs.div rest ctxt
| Lsl_nat, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.shift_left x y)) >>=? fun ctxt ->
begin
match Script_int.shift_left_n x y with
| None -> fail (Overflow (loc, get_log log))
| Some x -> logged_return (Item (x, rest), ctxt)
end
| Lsr_nat, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.shift_right x y)) >>=? fun ctxt ->
begin
match Script_int.shift_right_n x y with
| None -> fail (Overflow (loc, get_log log))
| Some r -> logged_return (Item (r, rest), ctxt)
end
| Or_nat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.logor, x, y) Interp_costs.logor rest ctxt
| And_nat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.logand, x, y) Interp_costs.logand rest ctxt
| And_int_nat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.logand, x, y) Interp_costs.logand rest ctxt
| Xor_nat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.logxor, x, y) Interp_costs.logxor rest ctxt
| Not_int, Item (x, rest) ->
consume_gas_unop descr (Script_int.lognot, x) Interp_costs.lognot rest ctxt
| Not_nat, Item (x, rest) ->
consume_gas_unop descr (Script_int.lognot, x) Interp_costs.lognot rest ctxt
(* control *)
| Seq (hd, tl), stack ->
step ?log ctxt step_constants hd stack >>=? fun (trans, ctxt) ->
step ?log ctxt step_constants tl trans
| If (bt, _), Item (true, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ?log ctxt step_constants bt rest
| If (_, bf), Item (false, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ?log ctxt step_constants bf rest
| Loop body, Item (true, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
step ?log ctxt step_constants body rest >>=? fun (trans, ctxt) ->
step ?log ctxt step_constants descr trans
| Loop _, Item (false, rest) ->
logged_return (rest, ctxt)
| Loop_left body, Item (L v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
step ?log ctxt step_constants body (Item (v, rest)) >>=? fun (trans, ctxt) ->
step ?log ctxt step_constants descr trans
| Loop_left _, Item (R v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
logged_return (Item (v, rest), ctxt)
| Dip b, Item (ign, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
step ?log ctxt step_constants b rest >>=? fun (res, ctxt) ->
logged_return (Item (ign, res), ctxt)
| Exec, Item (arg, Item (lam, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.exec) >>=? fun ctxt ->
interp ?log ctxt step_constants lam arg >>=? fun (res, ctxt) ->
logged_return (Item (res, rest), ctxt)
| Apply capture_ty, Item (capture, Item (lam, rest)) -> (
Lwt.return (Gas.consume ctxt Interp_costs.apply) >>=? fun ctxt ->
let (Lam (descr, expr)) = lam in
let (Item_t (full_arg_ty , _ , _)) = descr.bef in
unparse_data ctxt Optimized capture_ty capture >>=? fun (const_expr, ctxt) ->
unparse_ty ctxt capture_ty >>=? fun (ty_expr, ctxt) ->
match full_arg_ty with
| Pair_t ((capture_ty, _, _), (arg_ty, _, _), _, _) -> (
let arg_stack_ty = Item_t (arg_ty, Empty_t, None) in
let const_descr = ({
loc = descr.loc ;
bef = arg_stack_ty ;
aft = Item_t (capture_ty, arg_stack_ty, None) ;
instr = Const capture ;
} : (_, _) descr) in
let pair_descr = ({
loc = descr.loc ;
bef = Item_t (capture_ty, arg_stack_ty, None) ;
aft = Item_t (full_arg_ty, Empty_t, None) ;
instr = Cons_pair ;
} : (_, _) descr) in
let seq_descr = ({
loc = descr.loc ;
bef = arg_stack_ty ;
aft = Item_t (full_arg_ty, Empty_t, None) ;
instr = Seq (const_descr, pair_descr) ;
} : (_, _) descr) in
let full_descr = ({
loc = descr.loc ;
bef = arg_stack_ty ;
aft = descr.aft ;
instr = Seq (seq_descr, descr) ;
} : (_, _) descr) in
let full_expr = Micheline.Seq (0, [
Prim (0, I_PUSH, [ ty_expr ; const_expr ], []) ;
Prim (0, I_PAIR, [], []) ;
expr ]) in
let lam' = Lam (full_descr, full_expr) in
logged_return (Item (lam', rest), ctxt)
)
| _ -> assert false
)
| Lambda lam, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt ->
logged_return (Item (lam, rest), ctxt)
| Failwith tv, Item (v, _) ->
trace Cannot_serialize_failure
(unparse_data ctxt Optimized tv v) >>=? fun (v, _ctxt) ->
let v = Micheline.strip_locations v in
fail (Reject (loc, v, get_log log))
| Nop, stack ->
logged_return (stack, ctxt)
(* comparison *)
| Compare ty, Item (a, Item (b, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.compare ty a b)) >>=? fun ctxt ->
logged_return (Item (Script_int.of_int @@ Script_ir_translator.compare_comparable ty a b, rest), ctxt)
(* comparators *)
| Eq, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres = 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
| Neq, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres <> 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
| Lt, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres < 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
| Le, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres <= 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
| Gt, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres > 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
| Ge, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres >= 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
(* packing *)
| Pack t, Item (value, rest) ->
Script_ir_translator.pack_data ctxt t value >>=? fun (bytes, ctxt) ->
logged_return (Item (bytes, rest), ctxt)
| Unpack t, Item (bytes, rest) ->
Lwt.return (Gas.check_enough ctxt (Script.serialized_cost bytes)) >>=? fun () ->
if Compare.Int.(MBytes.length bytes >= 1) &&
Compare.Int.(MBytes.get_uint8 bytes 0 = 0x05) then
let bytes = MBytes.sub bytes 1 (MBytes.length bytes - 1) in
match Data_encoding.Binary.of_bytes Script.expr_encoding bytes with
| None ->
Lwt.return (Gas.consume ctxt (Interp_costs.unpack_failed bytes)) >>=? fun ctxt ->
logged_return (Item (None, rest), ctxt)
| Some expr ->
Lwt.return (Gas.consume ctxt (Script.deserialized_cost expr)) >>=? fun ctxt ->
parse_data ctxt ~legacy:false t (Micheline.root expr) >>= function
| Ok (value, ctxt) ->
logged_return (Item (Some value, rest), ctxt)
| Error _ignored ->
Lwt.return (Gas.consume ctxt (Interp_costs.unpack_failed bytes)) >>=? fun ctxt ->
logged_return (Item (None, rest), ctxt)
else
logged_return (Item (None, rest), ctxt)
(* protocol *)
| Address, Item ((_, address), rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.address) >>=? fun ctxt ->
logged_return (Item (address, rest), ctxt)
| Contract (t, entrypoint), Item (contract, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.contract) >>=? fun ctxt ->
begin match contract, entrypoint with
| (contract, "default"), entrypoint | (contract, entrypoint), "default" ->
Script_ir_translator.parse_contract_for_script
~legacy:false ctxt loc t contract ~entrypoint >>=? fun (ctxt, maybe_contract) ->
logged_return (Item (maybe_contract, rest), ctxt)
| _ -> logged_return (Item (None, rest), ctxt)
end
| Transfer_tokens,
Item (p, Item (amount, Item ((tp, (destination, entrypoint)), rest))) ->
Lwt.return (Gas.consume ctxt Interp_costs.transfer) >>=? fun ctxt ->
collect_big_maps ctxt tp p >>=? fun (to_duplicate, ctxt) ->
let to_update = no_big_map_id in
extract_big_map_diff ctxt Optimized tp p
~to_duplicate ~to_update ~temporary:true >>=? fun (p, big_map_diff, ctxt) ->
unparse_data ctxt Optimized tp p >>=? fun (p, ctxt) ->
let operation =
Transaction
{ amount ; destination ; entrypoint ;
parameters = Script.lazy_expr (Micheline.strip_locations p) } in
Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
logged_return (Item ((Internal_operation { source = step_constants.self ; operation ; nonce }, big_map_diff), rest), ctxt)
| Create_account,
Item (manager, Item (delegate, Item (_delegatable, Item (credit, rest)))) ->
Lwt.return (Gas.consume ctxt Interp_costs.create_account) >>=? fun ctxt ->
Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) ->
(* store in optimized binary representation - as unparsed with [Optimized]. *)
let manager_bytes =
Data_encoding.Binary.to_bytes_exn Signature.Public_key_hash.encoding manager in
let storage =
Script_repr.lazy_expr @@ Micheline.strip_locations @@
Micheline.Bytes (0, manager_bytes) in
let script =
{ code = Legacy_support.manager_script_code ;
storage ;
} in
let operation =
Origination
{ credit ; delegate ; preorigination = Some contract ; script } in
Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
logged_return (Item ((Internal_operation { source = step_constants.self ; operation ; nonce }, None),
Item ((contract, "default"), rest)), ctxt)
| Implicit_account, Item (key, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.implicit_account) >>=? fun ctxt ->
let contract = Contract.implicit_contract key in
logged_return (Item ((Unit_t None, (contract, "default")), rest), ctxt)
| Create_contract (storage_type, param_type, Lam (_, code), root_name),
Item (manager, Item
(delegate, Item
(spendable, Item
(delegatable, Item
(credit, Item
(init, rest)))))) ->
Lwt.return (Gas.consume ctxt Interp_costs.create_contract) >>=? fun ctxt ->
unparse_ty ctxt param_type >>=? fun (unparsed_param_type, ctxt) ->
let unparsed_param_type =
Script_ir_translator.add_field_annot (Option.map ~f:(fun n -> `Field_annot n) root_name) None unparsed_param_type in
unparse_ty ctxt storage_type >>=? fun (unparsed_storage_type, ctxt) ->
let code =
Script.lazy_expr @@
Micheline.strip_locations
(Seq (0, [ Prim (0, K_parameter, [ unparsed_param_type ], []) ;
Prim (0, K_storage, [ unparsed_storage_type ], []) ;
Prim (0, K_code, [ code ], []) ])) in
collect_big_maps ctxt storage_type init >>=? fun (to_duplicate, ctxt) ->
let to_update = no_big_map_id in
extract_big_map_diff ctxt Optimized storage_type init
~to_duplicate ~to_update ~temporary:true >>=? fun (init, big_map_diff, ctxt) ->
unparse_data ctxt Optimized storage_type init >>=? fun (storage, ctxt) ->
let storage = Script.lazy_expr @@ Micheline.strip_locations storage in
begin
if spendable then
Legacy_support.add_do ~manager_pkh:manager
~script_code:code ~script_storage:storage
else if delegatable then
Legacy_support.add_set_delegate ~manager_pkh:manager
~script_code:code ~script_storage:storage
else if Legacy_support.has_default_entrypoint code then
Legacy_support.add_root_entrypoint code >>=? fun code ->
return (code, storage)
else return (code, storage)
end >>=? fun (code, storage) ->
Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) ->
let operation =
Origination
{ credit ; delegate ; preorigination = Some contract ;
script = { code ; storage } } in
Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
logged_return
(Item ((Internal_operation { source = step_constants.self ; operation ; nonce }, big_map_diff),
Item ((contract, "default"), rest)), ctxt)
| Create_contract_2 (storage_type, param_type, Lam (_, code), root_name),
(* Removed the instruction's arguments manager, spendable and delegatable *)
Item (delegate, Item
(credit, Item
(init, rest))) ->
Lwt.return (Gas.consume ctxt Interp_costs.create_contract) >>=? fun ctxt ->
unparse_ty ctxt param_type >>=? fun (unparsed_param_type, ctxt) ->
let unparsed_param_type =
Script_ir_translator.add_field_annot (Option.map ~f:(fun n -> `Field_annot n) root_name) None unparsed_param_type in
unparse_ty ctxt storage_type >>=? fun (unparsed_storage_type, ctxt) ->
let code =
Micheline.strip_locations
(Seq (0, [ Prim (0, K_parameter, [ unparsed_param_type ], []) ;
Prim (0, K_storage, [ unparsed_storage_type ], []) ;
Prim (0, K_code, [ code ], []) ])) in
collect_big_maps ctxt storage_type init >>=? fun (to_duplicate, ctxt) ->
let to_update = no_big_map_id in
extract_big_map_diff ctxt Optimized storage_type init
~to_duplicate ~to_update ~temporary:true >>=? fun (init, big_map_diff, ctxt) ->
unparse_data ctxt Optimized storage_type init >>=? fun (storage, ctxt) ->
let storage = Micheline.strip_locations storage in
Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) ->
let operation =
Origination
{ credit ; delegate ; preorigination = Some contract ;
script = { code = Script.lazy_expr code ;
storage = Script.lazy_expr storage } } in
Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
logged_return
(Item ((Internal_operation { source = step_constants.self ; operation ; nonce }, big_map_diff),
Item ((contract, "default"), rest)), ctxt)
| Set_delegate,
Item (delegate, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.create_account) >>=? fun ctxt ->
let operation = Delegation delegate in
Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
logged_return (Item ((Internal_operation { source = step_constants.self ; operation ; nonce }, None), rest), ctxt)
| Balance, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.balance) >>=? fun ctxt ->
Contract.get_balance ctxt step_constants.self >>=? fun balance ->
logged_return (Item (balance, rest), ctxt)
| Now, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.now) >>=? fun ctxt ->
let now = Script_timestamp.now ctxt in
logged_return (Item (now, rest), ctxt)
| Check_signature, Item (key, Item (signature, Item (message, rest))) ->
Lwt.return (Gas.consume ctxt (Interp_costs.check_signature key message)) >>=? fun ctxt ->
let res = Signature.check key signature message in
logged_return (Item (res, rest), ctxt)
| Hash_key, Item (key, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.hash_key) >>=? fun ctxt ->
logged_return (Item (Signature.Public_key.hash key, rest), ctxt)
| Blake2b, Item (bytes, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.hash_blake2b bytes)) >>=? fun ctxt ->
let hash = Raw_hashes.blake2b bytes in
logged_return (Item (hash, rest), ctxt)
| Sha256, Item (bytes, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.hash_sha256 bytes)) >>=? fun ctxt ->
let hash = Raw_hashes.sha256 bytes in
logged_return (Item (hash, rest), ctxt)
| Sha512, Item (bytes, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.hash_sha512 bytes)) >>=? fun ctxt ->
let hash = Raw_hashes.sha512 bytes in
logged_return (Item (hash, rest), ctxt)
| Steps_to_quota, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.steps_to_quota) >>=? fun ctxt ->
let steps = match Gas.level ctxt with
| Limited { remaining } -> remaining
| Unaccounted -> Z.of_string "99999999" in
logged_return (Item (Script_int.(abs (of_zint steps)), rest), ctxt)
| Source, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.source) >>=? fun ctxt ->
logged_return (Item ((step_constants.payer, "default"), rest), ctxt)
| Sender, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.source) >>=? fun ctxt ->
logged_return (Item ((step_constants.source, "default"), rest), ctxt)
| Self (t, entrypoint), rest ->
Lwt.return (Gas.consume ctxt Interp_costs.self) >>=? fun ctxt ->
logged_return (Item ((t, (step_constants.self, entrypoint)), rest), ctxt)
| Amount, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.amount) >>=? fun ctxt ->
logged_return (Item (step_constants.amount, rest), ctxt)
| Dig (n, n'), stack ->
Lwt.return (Gas.consume ctxt (Interp_costs.stack_n_op n)) >>=? fun ctxt ->
interp_stack_prefix_preserving_operation (fun (Item (v, rest)) -> return (rest, v)) n' stack
>>=? fun (aft, x) -> logged_return (Item (x, aft), ctxt)
| Dug (n, n'), Item (v, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.stack_n_op n)) >>=? fun ctxt ->
interp_stack_prefix_preserving_operation (fun stk -> return (Item (v, stk), ())) n' rest
>>=? fun (aft, ()) -> logged_return (aft, ctxt)
| Dipn (n, n', b), stack ->
Lwt.return (Gas.consume ctxt (Interp_costs.stack_n_op n)) >>=? fun ctxt ->
interp_stack_prefix_preserving_operation (fun stk ->
step ?log ctxt step_constants b stk >>=? fun (res, ctxt') ->
return (res, ctxt')) n' stack
>>=? fun (aft, ctxt') -> logged_return (aft, ctxt')
| Dropn (n, n'), stack ->
Lwt.return (Gas.consume ctxt (Interp_costs.stack_n_op n)) >>=? fun ctxt ->
interp_stack_prefix_preserving_operation (fun stk -> return (stk, stk)) n' stack
>>=? fun (_, rest) -> logged_return (rest, ctxt)
| ChainId, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.chain_id) >>=? fun ctxt ->
logged_return (Item (step_constants.chain_id, rest), ctxt)
and interp
: type p r.
(?log: execution_trace ref ->
context ->
step_constants -> (p, r) lambda -> p ->
(r * context) tzresult Lwt.t)
= fun ?log ctxt step_constants (Lam (code, _)) arg ->
let stack = (Item (arg, Empty)) in
begin match log with
| None -> return_unit
| Some log ->
trace Cannot_serialize_log
(unparse_stack ctxt (stack, code.bef)) >>=? fun stack ->
log := (code.loc, Gas.level ctxt, stack) :: !log ;
return_unit
end >>=? fun () ->
step ?log ctxt step_constants code stack >>=? fun (Item (ret, Empty), ctxt) ->
return (ret, ctxt)
(* ---- contract handling ---------------------------------------------------*)
and execute ?log ctxt mode step_constants ~entrypoint unparsed_script arg :
(Script.expr * packed_internal_operation list * context * Contract.big_map_diff option) tzresult Lwt.t =
parse_script ctxt unparsed_script ~legacy:true
>>=? fun (Ex_script { code ; arg_type ; storage ; storage_type ; root_name }, ctxt) ->
trace
(Bad_contract_parameter step_constants.self)
(Lwt.return (find_entrypoint arg_type ~root_name entrypoint)) >>=? fun (box, _) ->
trace
(Bad_contract_parameter step_constants.self)
(parse_data ctxt ~legacy:false arg_type (box arg)) >>=? fun (arg, ctxt) ->
Script.force_decode ctxt unparsed_script.code >>=? fun (script_code, ctxt) ->
Script_ir_translator.collect_big_maps ctxt arg_type arg >>=? fun (to_duplicate, ctxt) ->
Script_ir_translator.collect_big_maps ctxt storage_type storage >>=? fun (to_update, ctxt) ->
trace
(Runtime_contract_error (step_constants.self, script_code))
(interp ?log ctxt step_constants code (arg, storage))
>>=? fun ((ops, storage), ctxt) ->
Script_ir_translator.extract_big_map_diff ctxt mode
~temporary:false ~to_duplicate ~to_update storage_type storage
>>=? fun (storage, big_map_diff, ctxt) ->
trace Cannot_serialize_storage
(unparse_data ctxt mode storage_type storage) >>=? fun (storage, ctxt) ->
let ops, op_diffs = List.split ops in
let big_map_diff = match
List.flatten (List.map (Option.unopt ~default:[]) (op_diffs @ [ big_map_diff ]))
with
| [] -> None
| diff -> Some diff in
return (Micheline.strip_locations storage, ops, ctxt, big_map_diff)
type execution_result =
{ ctxt : context ;
storage : Script.expr ;
big_map_diff : Contract.big_map_diff option ;
operations : packed_internal_operation list }
let trace ctxt mode step_constants ~script ~entrypoint ~parameter =
let log = ref [] in
execute ~log ctxt mode step_constants ~entrypoint script (Micheline.root parameter)
>>=? fun (storage, operations, ctxt, big_map_diff) ->
let trace = List.rev !log in
return ({ ctxt ; storage ; big_map_diff ; operations }, trace)
let execute ctxt mode step_constants ~script ~entrypoint ~parameter =
execute ctxt mode step_constants ~entrypoint script (Micheline.root parameter)
>>=? fun (storage, operations, ctxt, big_map_diff) ->
return { ctxt ; storage ; big_map_diff ; operations }