1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
(*****************************************************************************)
(* *)
(* Open Source License *)
(* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* Permission is hereby granted, free of charge, to any person obtaining a *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense, *)
(* and/or sell copies of the Software, and to permit persons to whom the *)
(* Software is furnished to do so, subject to the following conditions: *)
(* *)
(* The above copyright notice and this permission notice shall be included *)
(* in all copies or substantial portions of the Software. *)
(* *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *)
(* DEALINGS IN THE SOFTWARE. *)
(* *)
(*****************************************************************************)
type location = Micheline.canonical_location
let location_encoding = Micheline.canonical_location_encoding
type annot = Micheline.annot
type expr = Michelson_v1_primitives.prim Micheline.canonical
type lazy_expr = expr Data_encoding.lazy_t
type node = (location, Michelson_v1_primitives.prim) Micheline.node
let expr_encoding =
Micheline.canonical_encoding_v1
~variant:"michelson_v1"
Michelson_v1_primitives.prim_encoding
type error += Lazy_script_decode (* `Permanent *)
let () =
register_error_kind
`Permanent
~id:"invalid_binary_format"
~title:"Invalid binary format"
~description:
"Could not deserialize some piece of data from its binary representation"
Data_encoding.empty
(function Lazy_script_decode -> Some () | _ -> None)
(fun () -> Lazy_script_decode)
let lazy_expr_encoding = Data_encoding.lazy_encoding expr_encoding
let lazy_expr expr = Data_encoding.make_lazy expr_encoding expr
type t = {code : lazy_expr; storage : lazy_expr}
let encoding =
let open Data_encoding in
def "scripted.contracts"
@@ conv
(fun {code; storage} -> (code, storage))
(fun (code, storage) -> {code; storage})
(obj2 (req "code" lazy_expr_encoding) (req "storage" lazy_expr_encoding))
let int_node_size_of_numbits n = (1, 1 + ((n + 63) / 64))
let int_node_size n = int_node_size_of_numbits (Z.numbits n)
let string_node_size_of_length s = (1, 1 + ((s + 7) / 8))
let string_node_size s = string_node_size_of_length (String.length s)
let bytes_node_size_of_length s =
(* approx cost of indirection to the C heap *)
(2, 1 + ((s + 7) / 8) + 12)
let bytes_node_size s = bytes_node_size_of_length (MBytes.length s)
let prim_node_size_nonrec_of_lengths n_args annots =
let annots_length =
List.fold_left (fun acc s -> acc + String.length s) 0 annots
in
if Compare.Int.(annots_length = 0) then (1 + n_args, 2 + (2 * n_args))
else (2 + n_args, 4 + (2 * n_args) + ((annots_length + 7) / 8))
let prim_node_size_nonrec args annots =
let n_args = List.length args in
prim_node_size_nonrec_of_lengths n_args annots
let seq_node_size_nonrec_of_length n_args = (1 + n_args, 2 + (2 * n_args))
let seq_node_size_nonrec args =
let n_args = List.length args in
seq_node_size_nonrec_of_length n_args
let rec node_size node =
let open Micheline in
match node with
| Int (_, n) ->
int_node_size n
| String (_, s) ->
string_node_size s
| Bytes (_, s) ->
bytes_node_size s
| Prim (_, _, args, annot) ->
List.fold_left
(fun (blocks, words) node ->
let (nblocks, nwords) = node_size node in
(blocks + nblocks, words + nwords))
(prim_node_size_nonrec args annot)
args
| Seq (_, args) ->
List.fold_left
(fun (blocks, words) node ->
let (nblocks, nwords) = node_size node in
(blocks + nblocks, words + nwords))
(seq_node_size_nonrec args)
args
let expr_size expr = node_size (Micheline.root expr)
let traversal_cost node =
let (blocks, _words) = node_size node in
Gas_limit_repr.step_cost blocks
let cost_of_size (blocks, words) =
let open Gas_limit_repr in
(Compare.Int.max 0 (blocks - 1) *@ alloc_cost 0)
+@ alloc_cost words +@ step_cost blocks
let node_cost node = cost_of_size (node_size node)
let int_node_cost n = cost_of_size (int_node_size n)
let int_node_cost_of_numbits n = cost_of_size (int_node_size_of_numbits n)
let string_node_cost s = cost_of_size (string_node_size s)
let string_node_cost_of_length s = cost_of_size (string_node_size_of_length s)
let bytes_node_cost s = cost_of_size (bytes_node_size s)
let bytes_node_cost_of_length s = cost_of_size (bytes_node_size_of_length s)
let prim_node_cost_nonrec args annot =
cost_of_size (prim_node_size_nonrec args annot)
let prim_node_cost_nonrec_of_length n_args annot =
cost_of_size (prim_node_size_nonrec_of_lengths n_args annot)
let seq_node_cost_nonrec args = cost_of_size (seq_node_size_nonrec args)
let seq_node_cost_nonrec_of_length n_args =
cost_of_size (seq_node_size_nonrec_of_length n_args)
let deserialized_cost expr = cost_of_size (expr_size expr)
let serialized_cost bytes =
let open Gas_limit_repr in
alloc_mbytes_cost (MBytes.length bytes)
let force_decode lexpr =
let account_deserialization_cost =
Data_encoding.apply_lazy
~fun_value:(fun _ -> false)
~fun_bytes:(fun _ -> true)
~fun_combine:(fun _ _ -> false)
lexpr
in
match Data_encoding.force_decode lexpr with
| Some v ->
if account_deserialization_cost then ok (v, deserialized_cost v)
else ok (v, Gas_limit_repr.free)
| None ->
error Lazy_script_decode
let force_bytes expr =
let open Gas_limit_repr in
let account_serialization_cost =
Data_encoding.apply_lazy
~fun_value:(fun v -> Some v)
~fun_bytes:(fun _ -> None)
~fun_combine:(fun _ _ -> None)
expr
in
match Data_encoding.force_bytes expr with
| bytes -> (
match account_serialization_cost with
| Some v ->
ok (bytes, traversal_cost (Micheline.root v) +@ serialized_cost bytes)
| None ->
ok (bytes, Gas_limit_repr.free) )
| exception _ ->
error Lazy_script_decode
let minimal_deserialize_cost lexpr =
Data_encoding.apply_lazy
~fun_value:(fun _ -> Gas_limit_repr.free)
~fun_bytes:(fun b -> serialized_cost b)
~fun_combine:(fun c_free _ -> c_free)
lexpr
let unit =
Micheline.strip_locations (Prim (0, Michelson_v1_primitives.D_Unit, [], []))
let unit_parameter = lazy_expr unit
let is_unit_parameter =
let unit_bytes = Data_encoding.force_bytes unit_parameter in
Data_encoding.apply_lazy
~fun_value:(fun v ->
match Micheline.root v with
| Prim (_, Michelson_v1_primitives.D_Unit, [], []) ->
true
| _ ->
false)
~fun_bytes:(fun b -> MBytes.( = ) b unit_bytes)
~fun_combine:(fun res _ -> res)
let rec strip_annotations node =
let open Micheline in
match node with
| (Int (_, _) | String (_, _) | Bytes (_, _)) as leaf ->
leaf
| Prim (loc, name, args, _) ->
Prim (loc, name, List.map strip_annotations args, [])
| Seq (loc, args) ->
Seq (loc, List.map strip_annotations args)